Semi-supervised learning of user-preferred travel schedules

نویسندگان

  • Amrudin Agovic
  • Maria L. Gini
  • Arindam Banerjee
چکیده

We present a graph-based semi-supervised approach for learning user-preferred travel schedules. Assuming a setting in which a user provides a small number of labeled travel schedules, we classify schedules into desirable and non-desirable. This task is non-trivial since only a small number of labeled points is available. It is further complicated by the fact that each schedule is comprised of multiple components or aspects which are different in nature. For instance in our case arrival times are modeled by probability distributions to account for uncertainty, while other aspects such as waiting times are given by a feature vector. Each aspect can thought of as a different type of observation for the same schedule While existing label propagation approaches can exploit vast amounts of unlabeled data, they cannot handle multi-aspect data. We propose Multi-Aspect Label Propagation (MALP), a novel approach which extends label propagation to handle multiple types of observations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi - Supervised Learning of User - Preferred Travel Schedules ( Extended Abstract )

We present a graph-based semi-supervised approach for learning user-preferred travel schedules. Assuming a setting in which a user provides a small number of labeled travel schedules, we classify schedules into desirable and non-desirable. This task is non-trivial since only a small number of labeled points is available. It is further complicated by the fact that each schedule is comprised of m...

متن کامل

Mining User Intents in Twitter: A Semi-Supervised Approach to Inferring Intent Categories for Tweets

In this paper, we propose to study the problem of identifying and classifying tweets into intent categories. For example, a tweet “I wanna buy a new car” indicates the user’s intent for buying a car. Identifying such intent tweets will have great commercial value among others. In particular, it is important that we can distinguish different types of intent tweets. We propose to classify intent ...

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

A Survey on Semi-Supervised Learning Techniques

Semi-supervised learning is a learning standard which deals with the study of how computers and natural systems such as human beings acquire knowledge in the presence of both labeled and unlabeled data. Semi–supervised learning based methods are preferred when compared to the supervised and unsupervised learning because of the improved performance shown by the semi-supervised approaches in the ...

متن کامل

MEFUASN: A Helpful Method to Extract Features using Analyzing Social Network for Fraud Detection

Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009